一、三角函数诱导公式的作用:可以将任意角的三角函数转化为锐角三角函数。例如:
1、sin390°=sin(360°+30°)=sin30°=1/2.
2、tan225°=tan(180°+45°)=tan45°=1.
3、cos150°=cos(90°+60°)=sin60°=√3/2.
二、三角函数诱导公式的用法:
1、公式一到公式五函数名未改变, 公式六函数名发生改变。
2、公式一到公式五可简记为:函数名不变,符号看象限。即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数氏猛李值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。
3、对于kπ/2±α(k∈Z)的三角函数知友值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)
扩展资料:
常用的诱导公式:
sin (α+k·360°)=sinα(k∈Z).
cos(α+k·360°)=cosα(k∈Z).
tan (α+k·360°)=tanα(k∈Z).
cot(α+k·360°)=cotα (k∈Z).
sec(α+k·360°)=secα (歼迟k∈Z).
csc(α+k·360°)=cscα (k∈Z).
sin(π+α)=-sinα.
cos(π+α)=-cosα.
tan(π+α)=tanα.
cot(π+α)=cotα.
sec(π+α)=-secα.
csc(π+α)=-cscα.
参考资料来源:百度百科-诱导公式
标签:三角函数,诱导,用法