当前位置:知识百问>百科问答>等角螺线的定理

等角螺线的定理

2023-04-05 05:19:10 编辑:join 浏览量:557

等角螺线的臂的距离以几何级数递增。

设 L 为穿过原点的任意直线,则 L 与等角螺线的相交的角A永远相等(故其名),而此值为 arccot(b)。

tanA=ρ/d(ρ)=ke^(bθ)/bke^(bθ)=1/b,推出:b=cot(A),推出:角A=arccot(b)。设 C 为以原点为圆心的任意圆,则 C 与等角螺线的相交的角永远相等,而此值为 arctan(b),名为「倾斜度」

等角螺线是自我相似的;这即是说,等角螺线经放大后可与原图完全相同。

等角螺线的渐屈线和垂足线都是等角螺线。

从原点到等角螺线的任意点上的长度有限,但由那点出发沿等角螺线走到原点却需绕原点转无限次。这是由 Torricelli 发现的。(由于指数函数的取值范围为负无穷到正无穷,x=0是渐近线,因此永远不会到达原点0,无法从原点出发,上述有误)

等角螺线的定理

标签:等角,螺线,定理

版权声明:文章由 知识百问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhshbaiwen.com/answer/42013.html
热门文章