当前位置:知识百问>百科知识>设a为n阶方阵,且满足a^2=a。证明:r(a-e)+r(a)=n,其中e是n阶单位矩阵

设a为n阶方阵,且满足a^2=a。证明:r(a-e)+r(a)=n,其中e是n阶单位矩阵

2023-07-29 13:10:03 编辑:join 浏览量:557

设a为n阶方阵,且满足a^2=a。证明:r(a-e)+r(a)=n,其中e是n阶单位矩阵

因为A*A=A,所以A(A-E)=0;

故A-E的每个列向量都是方程Ax=0的解;

由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;

又由R(A)+R(B)>=R(A+B);

可得R(A)+R(A-E)=R(A)+R(E-A)>=R(A+E-A)=R(E)=n;

所以R(A)+R(A-E)=n。

扩展资料:

矩阵特征值与特征向量

n×n的方块矩阵A的一个特征值和对应特征向量是满足Av=λv的标量以及非零向量。其中v为唯型特征向量, λ为特征值。A的所有特征值的全体,叫做A的谱,记为 λ(A)。矩阵的特征值和特征向量可以揭示线性变换的深层特性。

矩阵特征值的性质

性质1:n阶方阵A=(aij)的所有特征脊悉根为λ1,λ2,…,λn(包括重根),则:

性质2:若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。

性质3:若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方樱山乎是A的m次方的一个特征根,x仍为对应的特征向量。

性质4:设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。

标签:单位矩阵,方阵,证明

版权声明:文章由 知识百问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhshbaiwen.com/article/203428.html
热门文章