f(x)函数公式是f(x)=1/x在x=3,泰勒展开式为: ∑(n=0,+∞) (-1)^n/3^(n+1)*(x-3)^n。
解析:
f(x)=1/x
= 1/[(x-3)+3]
= 1/3*1/[1+(x-3)/3]
= 1/3*∑(n=0,+∞) (-1)^n*[(x-3)/3]^n
= ∑(n=0,+∞) (-1)^n/3^(n+1)*(x-3)^n
高等数学中的应用
在辩世敏高等数学的理论返告研究及应用实践中,泰勒公式有着十分重要的应携枝用,简单归纳如下:
(1)应用泰勒中值定理(泰勒公式)可以证明中值等式或不等式命题。
(2)应用泰勒公式可以证明区间上的函数等式或不等式。
(3)应用泰勒公式可以进行更加精密的近似计算。
(4)应用泰勒公式可以求解一些极限。
(5)应用泰勒公式可以计算高阶导数的数值。
标签:公式,函数
版权声明:文章由 知识百问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhshbaiwen.com/article/30660.html