在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小旁竖的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
函数f(x)在x0连续,当且仅当f(x)满足以下三个条件:
①f(x)在x0及其左右近旁有定义;
②f(x)在x0的极限存在;
③f(x)在x0的极限值与函数值f(x0)相等。
连续函数性质
1、有界性
所谓有界是指,存在一个正数M,使得对于任意x∈[a,b],都有|f(x)|≤M。
证明:利用致密性定理:有界的数列必有收敛子数列。
2、最值性
所谓最大值是指,[a,b]上存在一个点x0,使得对任意x∈[a,b],都有f(x)≤f(x0),则称f(x0)为f(x)在[a,b]上的最大值。最小值可以同样作定义,只需把上面的不等号反向即可。
3、介值性
这个性质又被称作介值定理,其包含了两种特殊情况:
(1)零点定理。也就是当f(x)在两端点处的函数值A、B异号时(此时有0在A和B之间),在开区间(a,b)上必存在至少一点ξ,胡启核使f(ξ)=0。
(2)闭区间上的连续函数在裤掘该区间上必定取得最大值和最小值之间的一切数值。
标签:定义,连续